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1. Introduction

Advances in molecular )eam epitaxy and other crystal growth tech-
niques have allowed detailed studies of semiconductor heterostructures
[1].* In the last few years. the double-barrier resonant tunneling struc-

ture has been studied by a number of groups. This structure consists

of a thin layer of GaAs (about 50 A) surrounded on both sides by a
layer of AIGaAs (of similar thickness), all embedded in a GaAs cryst a!.
When electricaily contacted and biased, this structure displays peaks
in its- current-voltage characteristic [2-13]. From the scatterino point of
view, these peaks are attributed to peaks in the transmission coefficient
[14]. In terms of the electronic structure, the double-barri,-r potential
confines electronic states of certain energies, creating resonances that
manifest, themselves as peaks in the one-dimensional local deinsitv of
states between the barriers [15-18]. For a symmetric structutre in zero
applied electric field, the states can be labelled by even or odd parity.
ai = c or o, a wave vector transverse to the growth direction. k. and a
wave vector along the growth direction, q, associated with the solution
of a one-dimensional effective mass Schr6dinger equation. The (loully
degenerate electron energy cigen val ties are given by

E = t1 (k2 + q)/2rni, (I)

where ml is the conduction band effective mass at the l-point (for
GaAs). For a given value of k, there are resonant, values of q at which
the amplitude of the wave function inside the quantum well region is
large compared with the wave function amplitude outside this region.
For wave vector vali0s q that are not close to the resonant values,
the amplitude of the wave function inside the quantum well region
is suppressed relative to its outside value. Outside the quantim well
region, tle wave function amplitude is roughly the same for energies
on- an( off-resonance.

The above description of electronic states neglects certain as)ects
of the problem, such as external electric fields, scattering due to plho-
nons [19], impurit ies, and electron/electron interactions. The(, effects of
electron/elect ron interactions (space-charge buildup) on current -volt age
:haracterlistics have been discussed [20] and treated in detail within a
self-consistent scheme [21]. Inelastic scattering, and( its consequences
for resonant tin neilig, has also been discussed by several aut hors [18,221.
lowever, elastic scat tering (ile to impurit ies has not been treated tlie-

oretically. (espitct lile fact t hat at liquid it roge ll telliperat ures, where
inceasti 'renien 01t s oil double-barrier st rut ures are frequent lY made. clast iC

*References are listed at the end of the main body of text.
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scattering caused by charged impurities is the predominant scattering
mechanism [23]. While it is true that elastic scattering events are not
expected to have an effect on resonances that, is comparable to inelastic
events, recent experiments [13] on intentionally doped double-barrier
structures show that their effect is nontrivial and needs to be better
understood. In this paper we examine, in a qualitative way, the man-
ner in which scattering rates from a single charged impurity depend
upon the electron's initial state and the impurity's position. Next, as-
suming there is a distribution of randomly positioned impurities, we
add the probability for scattering due to each impurity, resulting in a
total elastic scattering rate. We find that for a finite system size and
certain values of the parameters, such as impurity potential range, the
scattering of resonant electrons (in the limit of low electric fields) can be
dominated by impurities in the quantumi well region. This is surprising
because in circumstances where sharp resonances are absent, contribu-
tions from the quantum well region are the same order of magnitude as
surface effects, which can be ignored.

In section 2 we establish our notation and briefly summarize the
form of the electron eigenstates for a double-barrier potential. In sec-
tion 3 we use these states to compute the scattering rate due to one
impurity, and in section 4 we consider the effects of a random distribu-
tion of impurities.

2. Eigenstates

Within a one-band effective mass theory, an elect ron state is represented

by a product, wave function [24]

Tc,k,q(r) = l/'.,k.q(r)uc(r) =-- (rja,kq), (2)

where ui(r) is the conduction band Bloch function at lie F-point (and
is taken to be the same function for GaAs and AlGaAs), and ',,k,q(r)
are the envelope functions. For a double-barrier potential

V{ ,, if a < Izi < at(1 + 6S);
V0z) { 0 otherwise, (3)
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the envelope functions, normalized' to unity over a volume L'. wre

previously calculated [17] and can be written

1
q4'.k,,(r) = I exp(ik - r)4i,k,,(z), (1

L

where k = (k,, ku, 0), and a labels the parity of the state, a = c(o) for
even (odd) parity. The z-dependent functions are given by

2qa) f cos(qz)b,e + sin(qz)6,,o Iz <a

'a k, qqa) d (-v) eyp(,(qa)z/a) + e(qa)exp(-w(qa)z/a) a < z < (1 + 6)a (5)
L/2 [f (qa)exp(iqz)+ g(qa)exp(-iqz) (1 +6)a < z < L/2

where 6,.e and 60,0 are Kr6necker delta functions, and the auxiliary
functions da(u), e((u), ft(u), g(u), and Fok(u) are defined in ap-
pendix A. The ianction w(u) is given by

S -- U 2

3 (6)

and carries a dependence on transverse wave vector k through

-- -1 - (I - O )lk12 a 2.  (7)

Here, -y is the dimensionless barrier height given by - - 2mVoa2 /h 2.
and 0 is the ratio of the effective masses, 0 _ rM1 / 2 , where rnt is the

mass in the quantum well region and outside the barriers, and m 2 is the
mass in the barrier region. Because the effective mass in the quantum
well region is different from that in the barrier regions, the effective
barrier height, y, is different for each k.

The functions (,k,,(z) and (1/m)dD,,k,q(z)/dz are continuous at
the interfaces z = ±a and z = ±(1 +6)a. Periodic boundary conditions
in a box of area L x L have been used in the x and y directions,
so the allowed values of k = 2 r(nr,n, 0)/L. where i, and 71 can

take any integer values. It is interesting to note that at sufficiently
large Ikl, the effective barrier height may actually be negative. The
allowed values of the z-component, wave vector, q. are given by the
roots of a transcendental equation whose precise form depends on the

*In normalizing the wave function, we have dropped terms of O(a/L) and
O(a6/L). In the quantmii well limit, I - oc or 6 - oc, the finction f,,(qa)
has zeros at resonant values of q, and the terms O(a/L) and O(ab/L) cannot he
dropped. However, for any finite value of 1, there is always a large enough L .,o
that. dropping these terms is justified. Physically, this means we are neglecting
surface effects, which can he imp~ortant when the thickness of the crystal becomes
sufficiently small, or when we approach the I - z' or 6 - De limit, with L fixed,

---. mnanl ~aia HIIl~ ni~lmlll 7



boundary conditions at z = ±L/2. However, in the limit alL , 0, the
density of roots approaches L/27r, and the solution of this equation is
not necessary. The energy eigenvalues associated with the state given
by equation (2), measured from the bottom of Lhe conduction band.
are given by equation (1).

The envelope functions given in equation (4) contain the resonance
effects due to the presence of the double-barrier potential through the
functions Fek(U) and Fo,k(u). For a given k, these functions have peaks
at u = qa, for wave vector values q = q,,, qe,2, qe.3, ... , and qo,1, qo.2,

qo,3, ... , respectively. The peaks in these functions correspond to an
even and an odd series of resonances. These functions are intimately
related to the local density of states, and have been discussed in detail
elsewhere [17]. An electron with a given transverse wave vector, k,
and q close to a resonant value has a wave function with a large am-
plitude in the quantum well region and, correspondingly, a decreased
amplitude outside the barriers, so that normalization over the interval
(-L/2, +L/2) is maintainedt An electron whose wave vector is not
near resonance has a small wave function amplitude in the quantum
well and barrier regions and, correspondingly, a larger amplitude out-
side these regions. Figure 1 shows a plot of the square of the even
envelope function, j0,,k,q(r)I2 , versus z/a, for on-resonance and off-
resonance electron states. The state that has a wave vector in the
resonance region, qa = 0.80, has a large v.wave function amplitude in the
well, compared to a state whose wave vector lies outside the resonance
range, qa = 1.5.

When the resonances are quite sharp it is appropriate to speak about
resonant subbands, analogous to the two-dimensional subbands in a
quantum well structure. A resonant subband is defined by a resonant
value of q (equal to one of the q,,, qe,2, qe,3, . .. , or q0,,, qo,2, qo,3, .. )

and a continuous value (in the limit L -+ cx) of transverse wave vector
k. These resonant subbands differ from those in a quantum well in
an essential way. In a quantum well the subbands arise from truly
localized states (for energies below the top of the barriers), while in
a double-barrier structure the resonant subbands arise from extended
states.

TSee footnote on page 7.

8



o qa 0.80
o

: qa =1.5

0

0.0 2.0 4.0 6.0 80 100

Z/a

Figure 1. Square of even function, L3 1,kq(r)!2 , is pott(,d
versus spatial position z/a, for "on-resonance"
(qa = qja = 0.80), and "off-resonance" (qa = 1.5), electrons for
case k = 0,6 == 1.0, 1 = 2.0, and /3 = 0.73.

3. Scattering Rate Due to One Impurity

The elastic scattering rate out of a conduction band state (a, k, q), to
any other conduction band state, can be found from Fermi's golden rule

27r

WI,kq = 27> 1(a',k',q'jULfj,k,ql)12 6 (Ek,q - Ek,,q,) , (8)

where U(r) is the impurity potential.1 For many impurity potentials
the matrix element in equation (8) can be approximated as a matrix
element between effective mass wave functions (see app B):

(a',kW,,q, lai, k, q)  d 3 (9

Calculation of this matrix element can be further simplified by substi-
tuting into equation (9) the explicit form of the waveftinction, given in
equation (4), and using the Fourier expansion of the potential,

U(r) = tj:(q)exp(iq- (r - R,)). (10)
q

lWe are not, considering potentials V(r), which couple to spin degrees of freedom:

hence we have omitted the spin labels on the electron states. The qlantity Y,.k.q

is the scattering rate out of a state labelled by ( k, q with either spin 1ip or down.

• • .i • ii ! I



where R, is the impurity position.5 The x and y spatial integrations can
then be performed, leading to a two-dimensional delta function in wave
vector variables. The sum over the x- and y-wave vector components
can then be done, resulting in the following expression:

_+ L/2
(a"k',q'LIlak,q) =exp(-i(k' -k)' R) dkL/2d q Z)4 ,. (Z)

E yO/(k' - k + pzz) exp(ip,(z - z,)), (1

P

where z, is the z-component of the impurity position vector and i is
a unit vector along the growth direction. The sum on pz is over the
z-component of the wave vectors appearing in equation (10), which
were used to expand the impurity potential. The x- and y-components
of the impurity position vector in equation (11) enter only as a phase.
Because the system is translationally invariant in the x' and y directions,
there is no loss in generality if we choose the x and y components of
the impurity position vector to be zero.

Using equation (11) we can immediately make a rough estimate of
the ratio of probability for scattering of resonant electrons within the
first subband, je,k,qci) -* e,k',q',), to scattering out of the first
subband into the second subband, le,k,q..,) -* Io,k',qoj, by noting

that the function I),,,k,q(Z) is proportional to F2k(qc). This ratio is

proportional to the factorl

F,,k (q',,I a )

Fo,k,(qo,Ia)

and is independcnt of the detailed form of the impurity potential. Here
q,., and q", are the resonant wavevectors corresponding to transverse
wave vectors k, and k', respectively." For the structure used by Sollner
et al [3], this ratio is '35, for k = k/ - 0.

§We assume that th impurity is located far from the walls of the box compared
to any length scale of interest.

IThis result is true only for impurities located in the quantum well region. Equa-
tion (5) may suggest that at resonance the wave function is large beyond the barri-
ers, z > (1 + 6)a, because F k(qa) is large. This is not the case because the factor

f,(qa), which multiplies Fak(qa) in the wave function, becomes small at resonance,

leading to a wave function that is not large outside the quantum well region.
lithe resonant wave vector values q = qei, qe,2, q = qe,3 .... and qo,1, qo,2, q,,3,

depend milhly on the corresponding value of k. This is a consequence of the
different effective masses in the quantum well and barrier regions (see eq. (6)).

10



It order to get a dearer picture of elastic scattering, we model a

charged impurity by a spherically syimmetric screeed (Coulomb i)oten-
tial [25-29]:

Zr) 2 exp(-A r - R,, I)(12)
K Ir- R, (

where I/A is the range of the potential, Zc is the inpmpurity charge, R,,
is the impurity position, and K is the static dielectic constat. I For

sim plicity, we are neglecting the effects of anisotropic screening. lor

this inipu rity potential, the sum on 7, in equation ( -a1) 'airbe clianiged

to an integral and evalated, resulting in the form

2 7" Z 2  1 +< , 2 13
(o'"k'q'lo. k. ,q) I2 - j dz Okq,(.Z)d.k, 7 ( z) exp(.1 --- fI). (1 3

where t he effective scr( ening wave vector, .,;, depends on tire t ra nsverse
mo1mentum through tlh( relation

'2 = A 2 + ( k - k )
2 . (l )

I UsinIg g (liat ion (13), we defin t' li dim(ensionless (1ltait itY /,'k,,';,,k,(

(,o',k', q'Illlo~k q m I a/2 \2 2 ()'212 1
0 0 1

[I 1L 1 Aa , + (k - k')2w ' l"~q:"'(j"'(''

where we have introduced the Bohr radius a,, = Kh2/ Z Z  ('ah'u-
lation of the funition /'.'k',',kq is tedious but straightforward, anid

tie resul ts for an impurity located inside the quantum ] well region and
inside tie barrier regions are given in appendix ('.

It the special case when the impurity is locMeld inside the well, or
bevond tIhe barriers (z,, > (l + 6)a), and when .; is sullicientlv lalge

i.e., 1k - k'L, is large (but still (k - k')-c << 1, whcre C is a riTiit ive

lattice vector) the ilratrix cleimei (-an )e alpl))'&)xinat ed )Y

87-l Z( 2 I'/'(1) V),,,k(qa)j 1

k" 'k / " \2 + (k - k') 2  d'ki(s)dki(.), (1(i)

where we have assu d i ,.;/ > 1, Irol)litng tCerrils of order ex p(- ,;1. 12).

This r(sult shows that the iiatrix ('elinit is large at resonant 'alues

of inrit iah ari ial elect ron wave vecOtrs. where' I',k,( q)and /',,k()

**A correct treat merit of screening in a d+lo,1le-harrier strucilur , is a difficult
problem in itself. We have chos'n to model thwr impurity by a physically pla silil,

zeroli -owlr potnl ial wit i as few nikir()wi par;irniteers as possible. Introducing
urisotropic screenuing worlld undoultedly initroduce more iiikIio 'ii para nrters.

II



,ve peaks. As lk - k'j increases, the magnitude of the matrix ele-

ment decreases. This is a consequence of the rapid oscillations in the
transverse part of the wave function that serve to diminish the integral.

We now substitute the explicit form of the matrix element given in

equation (15) into equation (8) for the scattering rate and sum over

all final states. In the limit L , oc, the density of wave vectors ap-
proaches (L/27r) 3 per unit volume in (k,q)-space, and we can change
the sum over wave vectors to an integral over the region q' > 0 and

-oc < k'k, k < +oc. In cylindrical coordinates, we do the q integra-
tion, leading to the following expression for the scattering rate:

8h ( ) (17)mt i~ - ll-a2L

where

d- -' + 1 1
d dx,/ - 2 [k2 + q2 -

[G(',kq;'a, q;x) + G(c,', a, k, q; -r)]. (18)
LO re,O

In equation (18) we have introduced the dimensionless function

(;('V. q'; a, k, ; x) A2a2  (k - k') 2 a2  (19)

and the dimensionless wave vectors k" = kla, P' = k'Ia, 4 = qa. Ia
the integrand of equation (18), the functions G are .waluated at q'
where q = [ 2 + q2 - 0r2]/2. The integration is over the (1imensionless
final Iransverse wave vector, A". and x = cos(O), where 0 is the angle
between the initial and final wave vectors, k and k'. The integration

over k' has a. finite upper limit, a consequence of energy conservation.
Ile double integ cal in equation (18) was done numerically, and the

results are shown in figures 2 - d 3. for parameters characterizing the
structure used by Sollner et al [3], for an impurity potential range

1/\ = 10a.
The solid curve in figure 2 is the scattering rate out. of an even state.

The peak at qa = 0.898 (off the scale) is due to the lowest, energy even

resonance, while the peak near qa 2.0 is due to the next higher en-
ergy even rsonance. The (lashed Iine shows the scattering rate out of
odd states, and the peak at qa = 1.66 is due to the lowest energy odd

resonance. As one would expt, Ilie peaks in the even and odd scatter-
ing rates alternate with increasing wave vector. For this structiire and

12



potential range, the ratio of the scattering rate at the largest even peak
to the largest odd peak is approximately 100. The dotted line in figure
2 shows the scattering rate out of even states in a bulk semiconductor
(where y = 0 and /3 = 1) with the same range potential 1/A = 10a.
The large scattering rate near q = 0 is due to the ('oulomlbic nature
of the impurity potential (there would be a divergence for 1/A - OG).
Electrons which occupy states near the lowest energy resonance expe-
rience scatterings 3000 times more frequently than occurs in the bulk.
For a longer range potential, the peaks in the scattering rate would be
less pronounced. However, the overall scattering rate would be bigger
because of increased wave function and impurity potential overlap. Be-
cause of the large scattering rates for states near resonance, we expect
that the local density of states, averaged over the quantuim well region.
can be significantly modified from that calculated without imnpurities
[15,17).

C4 t 2.54
0 e

o iio

of0

C° - i

0

C)=

0.0 0.5 1.0 15 20 2.5 3.0

qa

Figre 2. Dine,,sion less scattering rate, ,,k,q(M~a2L 3)/
(8ha ), Is plotted versus qa, for an impurity located at center of
quantum well, z, = 0. Solid and dashed curves are scattering
ra- ,,.s out of even and odd states, a = c and a = o, respectively,
for k = 0 and barrier height V = 0.23 eV, effective mass in
quantumn well In, = 0.067, 6 = 2.0, 13 = 0.73, and impurity
potential range 1/A = 10a. ror case cr = c, peak at, qa = 0.898 IS
off the scale, reaching a nmaximum value of - :000, in units oil
grap~h. Dotted curve is scattering rate in ab~sence, of a
dIotileh-Iarrier struc'hire,, 0.0, 13 = 1.0, for a p~ote'ntial range
I/A =- 10a.
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0

,

Figure 3. Solid line is a plot of S.
Edimensionless scattering rate.

' e,k,q( ,,,a, 3 )/(8 ha3 ) versus ............................

impurity position z,/a, for - °

resonant state k = 0, qa - q,.I a
= 0.897, for same structure as

in figure 2. Dashed line below 6 _

solid curve shows position of 0.0 1.0 2.0 3,0

barrier. zoi/a

Figure 3 shows a plot of the scattering rate as a function of impurity
position for states in the range of the lowest energy even resonance.

Impurities near the center of the quantum well give a somewhat larger
rate of scattering than those near the edges, because of the peaked
nature of the even wave functions. However, for this potential range,
this is a minor effect. In the calculations above, we made a somewhat
arbitrary chokte of the potential range: i/A = 10a. For a shorter range
potential, the depend ace of the scattering rate on impurity position
would be stronger than that shown in figure 3; however, the overall
values of the scattering rates would be smaller because of decreased

overlap of the impurity potential with the electron wave functions.

4. Random Distribution of Impurities

The total scattering rate, W,0 ,k,q, due to a macroscopic number of ran-
domly distributed impurities can be found from the one impurity scat-
tering rate in equation (17) by summing over impurity posit ion vectors

Re. This can be seen by considering the matrix element of the total
p)otential, ITN,, which is a sum of "j one-impurity potentials, each cen-
tered about a position vector Re from a set of A, random position tt

111f the impurities are stiEstittutional then these vectors coincide with crystal
lattice sites.

14



vectors, {R0 }. The matrix element for scattering from N, impurities is
then a sum of single impurity matrix elements, each given by equation
(11), and can be written as

(a',kW, q'JUN. lar, k, q) = exp(-iK.- Ro,)mp,,(_-,), (20)
{Ro}

where we have introduced the shorthand notation K = k' - k, p
{o,k,q} and p' = {o',k',q'}. The absolute square of this matrix ele-
ment can then be written as

, k' UN a,k,q)l2 = j exp(-iK'(Ro-R')App'(z,)Ap,,(zo).
{Ro} {R'o}

For a macroscopic number of impurities at random positions. the phascs
in the sum above add incoherently, resulting in a sum that is close to
zero except when R0 = R'o or K = 0. These two conditions lead to two
terms,

(a', k', q'UN, 1, k, q)[ = j iAv, '(zo)1 2 + 1Z: Ap,p'(z,) 2 k.k', (21)
{Ro} {R.}

respectively, where the sums are over the zo-components of the set of
random impurity positions. The second term is negligibly small because
the random phases cancel in the summation over z,. Substitution of the
first term into Fermi's golden rule yields a total scattering rate which
is a sum of single impurity scattering rates, given in equation (17).

In a bulk semiconductor the single impurity scattering rate WU,k,q(Zo)

is roughly independent of position z,, leading to a total scattering rate
proportional to impurity density n, = Ni/L 3 . However, in a double-
barrier structure the function S,,kq(Zo) can have a strong spatial de-
pendence in the quantum well region because of the presence of the
resonances. For on-resonance (off-resonance) electrons the wave func-
tion amplitude in the quantum well region is large (small) compared to
outside this region, leading to a large (smaii) contribution to the total
scattering rate from impurities in the quantum well.

The sum of equation (17) over impurity positions z, can be ap-
proximated by the factor ni times an integral over the crystal volume.
Integration over the x,, y, coordinates contributes a factor L', resulting
in a total scattering rate that can be written as

Sh JSokq(zjd(zoa) + Sc,,k,q(zo)d(zo/a)] (22)
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where the integration region R is the well plus barrier, zo1/aj < I + 6,
and R2 is the region outside the barriers, 1 + 6 < Izo/al < L/2a.

The first term in equation (22) gives the contribution to the total
scattering rate from the quantum well (and barriers) region, and the
second term gives the contribution from the rest of the crystal. Since
the quantum well forms a negligible volume fraction of the whole crystal
volume, it may appear at first sight that the first term is O(a/L) times
the second term, and hence is completely negligible. This is true for
electrons that are in states away from the resonance regions. However,
electrons with wave vectors that satisfy the resonance conditions (see
sect. 1) may have a macroscopic fraction (i.e., not O(a/L)) of their
normalization in the quantum well region." For resonant electrons,
this leads to a situation where the contribution to the total scattering
rate from impurities in the quantum well region, given by the first term
in equation (22), is comparable to the contribution from the rest of the
crystal, given by the second term. This is essentially a finite size effect.
As expected, for sufficiently large crystals, L -+ oc, the second term
always becomes larger. We find that for a sample whose total thickness
is 30 I, with 40-A well and barriers, and an impurity potential range
1/A = 10a, the first term is comparable to the second.

5. Conclusion

Within the framework of a simple model, we explored elastic impurity
scattering for electrons in resonant states. We found that for certain
parameters, such as screening length and well and barrier widths, im-
purities in the quantum well region can contribute significantly and
even dominate the scattering rate, despite the fact that a quantum
well occupies a negligible volume fraction of the crystal. We have used
a simple model of isotropic screening which is an oversimplification.
Proper treatment of screening in a double-barrier structure is in itself
a difficult problem. We have also ignored effects associated with space
charge, external electric field, and band nonparabolicitv.
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Appendix A. Functions in Equation (5)

The functions in equation (5) in the main body of the text are
defined belowv:

d,,,(u) I -exp(-W(U))j,-(U)
2

Cexp(-i(1 ( x/3w(u) ____

f,(it) 4 (?( + 6)u){exp(wV(u)b) +1 ± U ij.,(u) + exp(-iv(u)6 ) ( I .1U) (TI)}

g, (U) 4 exp(I(1 + )u){exp(zv(u)b) (I - 2 ij)07(7t) + exp(-)(T1)b) + (U)~u I~(

77,(u) cos(u) - U sin(u)

U
77()sin(u) + -wu cos(u)

WU )

e(u) cos(u) + sin(u)
/3w(U)

U
,J)sin(u) - fl-u COSMu)

The function Fa,k(u) in equation (5), correct to zeroth order in
alL, can be written as

F,,,k(u) 
2

For a e , the function D,(u), in the denominator is given by

D, (it) it + (3 + (I _ i3)?) \Cos 2 (?) + U -sn2?)(cosh (26?v(u)) - 1)
2 ( - 11

2 )

I 3 (u) 5 + (1 - 3)u 2 ) u sin(2usinh (26w(tL)).

For a =o, the function Dj(t) can be obtained from D,(u) by the
replacements sin(u) -+cos(ti), cos(lL) -*-sin(u), and sin(2t) -

-sin(21L).

19



Appendix B. Impurity Matrix Elements

For many interesting impurity potentials the matrix element in
equation (8) (see main body of text) can be expressed as a ma-
trix element between envelope functions. This can be shown by
changing the integration over all space to a sum over all lattice
vectors R and an integral over a single primitive cell of volume v:

(a',k',q'UIa, k,q) =j d'rVk,k,,q,(r + R)u*(r + R)U(r + R)O,',k.q(r + R)u,(r + R). (B - 1)
R

The envelope functions vary slowly over a primitive cell, so they
can be expanded about an arbitrary lattice vector, 1'cyk,q(R+r) =

VPc,k,q(R) + V' b,k,q(R) • r + .., while the Bloch functions are
periodic, u,(r + R) = u,(r). Using this in equation (B-i) and
keeping only the first term, we have

(a',, q'lUla, k, q) = Zj_1 darjuc(r)12U(r + R)4,a, k',q,(R)V).,k,,(R). (B - 2)
R-/

We now Fourier expand the impurity potential in plane waves

as in equation (10) of the text. In this expansion q takes the

values (n,, n., n,)2ir/L, where nX, ny, n,, are integers. Using this

expansion in equation (B-2) we get

(0',k',q'JUla,k,q) = U(q) 1 exp(iq- (R - Ro))Vt,k,.q,(R)O.,k,q(R) jd3rIu,(r)12 exp(iq, r).
q R

(B -:3)

If we assume that U(q) ; 0 for Iql > q,, where q, is some cutoff
wave vector that satisfies q, < 1/Jcl, and c is a primitive lattice
vector, we can cut off the sum on q, in equation (B-3), at )qj = q,,.
For all r within a cell we have q . r < i, so we can expand the

exponential in equation (B-3), keeping only the first term, and

write

fd3rlu,(r)i2 exp(iq- r) = v + O(qjRI).

where we are assuming that the Bloch functions are normalized to

v over the primitive cell. Using these approximations in equation
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(B-3), changing the sum on R to an integral over the crystal
volume 9,

-* d3R, (B - 5)
R

we can write the matrix element in equation (B-3) approximately

as given in equation (9) of the text. Note that a delta-function

impurity potential does not allow this simplification.

22



Appendix C. Definition of the Function ',k.q/;a,k.q

In this appendix we give the explicit form of the quantityb'k'';kq(z)
introduced in equation (15) of the text. When the impurity is in-
side the quantum well region, 0 < z0, < a,

1 1 ( ) 1 I a f?+Q rex(-s exp(-s + i'(q + q')) -
~~ - 4 [D.&(q'a)D(qa) 1I 2  1 Lx --s + i(q + q')

(-1)' _z,, exp(-s + i''(q - q')) -1.

-8 + ?(q - q')

+ (-I)'+"' exp(sz,) exp(-.s + I(q + q')) - exp[(-s + i'(q + q'))z.]
-S + i,(q + q')

+ (~)exp(_50 exp(-s + 2'(q -q')) - exp[(-s- + 1i(q - q'))zj]
-s + 7(9 - q')

- -)~'exp(-sz,) 1-exp[(s *+ i'(q + q'))z,0 ]
S + i(q + q')

- (-1s-exi( 1 ez0 ) s + i(q - q'))z,

cx3- + A*( + 0'S]

+ -[exp(S(Z 0 - 1)) + (1)'+" exp(-~S(Zo + 1))] [i,*,,q'a)i J(qa )ep(s+A+A6a
a -s + A + A'*

+ ~qI~j~~(qa)exp[(-s + A - A'*)ba] -1I
+ -s + A -A'

+ exp[(-,s - A + A'*)bal - - - ep[(-s - A - A'*)6a] -
+ .r(qa) ,(qa) -A + A'- ± + (q'a (),(q) ex A A'

+ f*,(q'a)f,,(qa) exp(-s~a) + 4eqaf~ xp(-s6a)
-iqq') sqa - ia q + q')

+ (" a .qa)exp(-s6a) + ,,(q'a) K,(qa)ex1(sa

.9 2(q +q') s+i?(q-'(-)
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When the impurity is inside the barrier region, a < ( + 6)a,

Ia' ,q';a,k,q(Zo) 1() +, q q'-'~ ex (xp-s z±, iS.+ q') .

4 [D,)(q'a)D.(qa)]1/2{ I,} aqep-soRc L - + 1,(q + q')

+ (-,1).I exp(-s + i(q -q')) 1

-s+ Z(q -q')

+ (-)~'~~' ep(-s 0 ) xp(s, + i(q + q'))-1
+ ( - )'+ exp -sz ) e s + i(q + q')

±(1aexp(.s + i'(q - q')) -1
+ (-I~o s± i .2(q - q')

+ C1~ XI)(8S(_ + 1)) [ilqa) (a exp[(-s + A + A')a6] I

a 1 ~q q) -+ A + A'*

ep(s+ A - A'*)a~l - I
+ ,(q'a) -8-a A

--s- A + A'*

- exp((-9 - A - A'*)aSI - I
+ ,,(q'a) ,(qa)A-A'

I exp-,,;(,exp[(s + A + A'*)(z0 - 1)] 1
+a s±a /, q) x A + A'*

+ *,(q'a)f ,qa)ex p((s + A - A *)(z, -- I)] - I

+ eI(~)~q)xp( - A + A')(:, - 1)] -

+ j*,,('a) (qal ";- A + A'*

+ ,'(q'a) c,(qa)v cp[(s - A -A' *)(z,, - I)
s-A - A'* -

2-1



+ I exp(q( 0 - 1))!'(q'a) ,(qa)ep[(-s + A + A'*)a6] -exp[(-s + A + A'")(z.- 1)
a -s + A + A'

-. ,q'a)('a\exp[(-s + A - A'*)a6] - exp[(-s + A - A'*)(z, - 1)1

+ ,(q qa) - +

+,il,(qa) ) qeXp[(-.- A + A')a6] -exp[(-.s - A + A')(z - 1]

qa) (-q - A + A'

+ , q'a)~0 (qexp[(-s - A - A'")a8] - exp[(-s- A - A')(z - 1)] 1
-s -A- A'*

exp(-sa(1 - 3))(exptszo) + (-1)'+" exp(-.sz)) f,,(qa)fqa)ex(as~ + 6)) i(q-q)

+ ,(q'a)f (qa) + f,(q'a) (qa) + g,(qa),(qa) 1(
-+ i(q + q') -s-i(q + q') -s - (q - q')J "

In equations (C-l) and (('-2) we have introduced the functions

=(qa) qar 0 (qa),

.fa(qa) 2 qa exp[iqa(5 + I )]f,(qa)

fj0 (qa) 2qa exp[-iqa(6 + 1)]g,(qa),

I
A =-(qa),

a

where qj0 (qa), E,,(qa). f,,(qa), g,,(qa). and w(u) are defined in1 ap-
pendix A and equation (6), respectively. When these functions
appear with primed subscripts, the final state value of the trans-
verse wave vector (= k') should be used in their definition. The
parameter A', for the final state, is defined by A' = u'(q'a)/a.
where k' is used in equation (7) in place of k. We have also in-
troduced the operator i?,. which operates on a complex number
z according to the definition Rh. , + (-=) zz, where n is an
integer. In equations (C-i) and (C-2) we use the convention that
r = 0 for an even state and o = I for an odd state.
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